Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

4,4'-Bipyridine-dimethylglyoxime (1/1)

Yan Yang, Ziping Huang, Haitang Lv and Aixia Han*

College of Chemical Engineering,Qinghai University, Xining 810016, People's Republic of China
Correspondence e-mail: yyan217@163.com
Received 14 November 2011; accepted 17 December 2011
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.043 ; w R$ factor $=0.133 ;$ data-to-parameter ratio $=17.6$.

In the title compound, $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$, both the dimethylglyoxime and the $4,4^{\prime}$-bipyridine molecules have crystallographic C_{i} symmetry. The molecules stack along the a-axis direction with a dihedral angle of 20.4 (8) ${ }^{\circ}$ between their planes. In the crystal, the components are linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds into alternating chains along [120] and [1六0].

Related literature

For the coordination modes of dimethylglyoxime, see: Malinovskii et al. (2004); Coropceanu et al. (2009). For its use in mediate magnetic interactions, see: Cervera et al. (1997).

Experimental

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2} \\
& M_{r}=272.31 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=8.7247(17) \AA \\
& b=7.1486(14) \AA
\end{aligned}
$$

$\mu=0.09 \mathrm{~mm}^{-1}$	$0.20 \times 0.18 \times 0.15 \mathrm{~mm}$
$T=298 \mathrm{~K}$	
Data collection	
Bruker SMART APEX CCD	9684 measured reflections
\quad diffractometer	1636 independent reflections
Absorption correction: multi-scan	1265 reflections with $I>2 \sigma(I)$
$\quad(S A D A B S ;$ Bruker, 2001)	$R_{\text {int }}=0.040$
$\quad T_{\min }=0.982, T_{\max }=0.987$	
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$	93 parameters
$w R\left(F^{2}\right)=0.133$	H -atom parameters constrained
$S=1.05$	$\Delta \rho_{\max }=0.19 \mathrm{e} \AA^{-3}$
1636 reflections	$\Delta \rho_{\min }=-0.13 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\mathrm{A}^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{~N} 1^{\mathrm{i}}$	0.82	1.94	$2.7459(17)$	169

Symmetry code: (i) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the Qinghai Province International Science and Technology Cooperation Plan Projects (2011-H-808).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LD2038).

References

Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.
Cervera, B., Ruiz, R., Lloret, F., Julve, M., Cano, J., Faus, J., Bois, C. \& Mrozinski, J. (1997). J. Chem. Soc. Dalton Trans. pp. 395-401.
Coropceanu, E., Croitor, L., Gdaniec, M., Wicher, B. \& Fonari, M. (2009). Inorg. Chim. Acta, 362, 2151-2158.
Malinovskii, S. T., Bologa, O. A., Coropceanu, E. B., Luboradzki, R. \& Gerbeleu, N. V. (2004). Russ. J. Coord. Chem. 30, 339-345.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

4,4'-Bipyridine-dimethylglyoxime (1/1)

Y. Yang, Z. Huang, H. Lv and A. Han

Comment

Dimethylglyoxime $\left(\mathrm{H}_{2} \mathrm{dmg}\right)$ with its two oximate group $(=\mathrm{N}-\mathrm{O}-)$ is a suitable scaffold to construct metal-containing building blocks for extended supramolecular architectures. Several complexes of transition metals with this ligand and its derivatives have been reported (Malinovskii et al., 2004; Coropceanu et al., 2009). Moreover, the NO oxime group has a remarkable efficiency to mediate magnetic interactions when it acts as a bridging ligand (Cervera et al., 1997).

Starting from $\mathrm{Mn}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$ and $\mathrm{H}_{2} \mathrm{dmg}$, and using 4,4'-dpy as a bridging ligand, we have aimed to prepare a complex with superior magnetic properties. However, the reaction resulted in a stoichiometric (1:1) molecular complex of dimethyl-glyoxime-4,4'-bipyridine.

In this structure, the molecules of $\mathrm{H}_{2} \mathrm{dmg}$ and 4,4 --dpy are linked through $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds into alternating chains (Fig. 2).

Experimental

$\mathrm{Mn}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.025 \mathrm{~g}, 0.1 \mathrm{mmol})$ in 5 ml of water and $\mathrm{CH}_{3} \mathrm{COONa}(0.016 \mathrm{~g}, 0.2 \mathrm{mmol})$ were added to a mixture of $\mathrm{H}_{2} \mathrm{dmg}(0.024 \mathrm{~g}, 0.2 \mathrm{mmol})$ and $4,4^{\prime}-\mathrm{dpy}$ in 10 ml of methanol. The reaction mixture was boiled in a crucible for ~ 10 \min. The solvent was then evaporated and colorless crystals of the title compound were obtained.

Refinement

Methyl H atoms were placed in calculated position with $\mathrm{C}-\mathrm{H}=0.96 \AA$, and torsion angles were refined, $U_{\text {iso }}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{C})$. The position of the O -bound H -atom was determined from a difference Fourier map and then geometrically restrained with $\mathrm{O}-\mathrm{H}=0.82 \AA$, and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. Aromatic H atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and refined in riding mode with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Figures

Fig. 1. Molecular structure showing 50\% probability displacement ellipsoids.

supplementary materials

Fig. 2. Heterosoric stacks of the molecules.

4,4'-Bipyridine-dimethylglyoxime (1/1)

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=272.31$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=8.7247$ (17) \AA
$b=7.1486$ (14) \AA
$c=11.502(2) \AA$
$\beta=99.44(3)^{\circ}$
$V=707.6(2) \AA^{3}$
$Z=2$

Data collection

Bruker SMART APEX CCD
diffractometer
Radiation source: fine-focus sealed tube
graphite
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\min }=0.982, T_{\max }=0.987$
9684 measured reflections

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.133$
$S=1.05$
1636 reflections
93 parameters
0 restraints
$F(000)=288$
707.6(2)
$D_{\mathrm{x}}=1.278 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1636 reflections
$\theta=2.4-27.5^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Block, colourless
$0.20 \times 0.18 \times 0.15 \mathrm{~mm}$

1636 independent reflections
1265 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.040$
$\theta_{\max }=27.5^{\circ}, \theta_{\min }=2.4^{\circ}$
$h=-11 \rightarrow 11$
$k=-9 \rightarrow 9$
$l=-14 \rightarrow 14$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.062 P)^{2}+0.1229 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.021$
$\Delta \rho_{\max }=0.19 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.13$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$
C1	$0.02851(14)$	$0.09220(19)$	$0.48302(12)$	$0.0464(3)$
O1	$0.72158(14)$	$0.26180(17)$	$0.14282(10)$	$0.0699(4)$
H1	0.7740	0.1714	0.1296	0.105^{*}
N1	$0.14118(15)$	$0.43625(18)$	$0.41432(12)$	$0.0600(4)$
N2	$0.62500(14)$	$0.31488(17)$	$0.03926(12)$	$0.0556(4)$
C5	$-0.04603(17)$	$0.1905(2)$	$0.38632(14)$	$0.0557(4)$
H5	-0.1364	0.1429	0.3421	0.067^{*}
C6	$0.55111(16)$	$0.4662(2)$	$0.05327(13)$	$0.0518(4)$
C3	$0.21126(19)$	$0.3451(2)$	$0.50901(16)$	$0.0652(5)$
H3	0.2997	0.3982	0.5527	0.078^{*}
C2	$0.16017(18)$	$0.1766(2)$	$0.54594(15)$	$0.0591(4)$
H2	0.2137	0.1190	0.6130	0.071^{*}
C4	$0.01328(18)$	$0.3583(2)$	$0.35553(15)$	$0.0605(4)$
H4	-0.0391	0.4208	0.2899	0.073^{*}
C7	$0.5661(2)$	$0.5712(3)$	$0.16681(15)$	$0.0701(5)$
H7A	0.5414	0.4897	0.2275	0.105^{*}
H7B	0.4958	0.6754	0.1578	0.105^{*}
H7C	0.6707	0.6158	0.1881	0.105^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0428(7)$	$0.0475(7)$	$0.0486(7)$	$0.0018(5)$	$0.0062(5)$	$-0.0049(6)$
O1	$0.0727(8)$	$0.0700(8)$	$0.0608(7)$	$0.0253(6)$	$-0.0076(6)$	$-0.0006(5)$
N1	$0.0600(8)$	$0.0521(7)$	$0.0671(8)$	$-0.0065(6)$	$0.0081(6)$	$-0.0017(6)$
N2	$0.0527(7)$	$0.0553(7)$	$0.0560(7)$	$0.0087(5)$	$0.0001(5)$	$0.0000(5)$
C5	$0.0513(8)$	$0.0572(8)$	$0.0550(8)$	$-0.0064(6)$	$-0.0020(6)$	$0.0017(7)$
C6	$0.0473(7)$	$0.0539(8)$	$0.0529(8)$	$0.0050(6)$	$0.0042(6)$	$-0.0030(6)$
C3	$0.0583(9)$	$0.0607(9)$	$0.0723(11)$	$-0.0125(7)$	$-0.0024(8)$	$-0.0045(8)$
C2	$0.0548(8)$	$0.0562(9)$	$0.0614(9)$	$-0.0035(7)$	$-0.0049(7)$	$0.0018(7)$
C4	$0.0621(9)$	$0.0570(9)$	$0.0596(9)$	$-0.0021(7)$	$0.0020(7)$	$0.0063(7)$
C7	$0.0760(11)$	$0.0732(11)$	$0.0567(9)$	$0.0180(9)$	$-0.0026(8)$	$-0.0097(8)$

Geometric parameters $\left({ }_{A},{ }^{\circ}\right)$

C1-C5	1.384 (2)	C6-C6 ${ }^{\text {ii }}$	1.474 (3)
C1-C2	1.391 (2)	C6-C7	1.493 (2)
C1-C1 ${ }^{\text {i }}$	1.484 (3)	C3-C2	1.376 (2)
$\mathrm{O} 1-\mathrm{N} 2$	1.3941 (17)	C3-H3	0.9300
O1-H1	0.8200	C2-H2	0.9300
N1-C4	1.329 (2)	C4-H4	0.9300
N1-C3	1.329 (2)	C7-H7A	0.9600
N2-C6	1.2831 (18)	C7-H7B	0.9600
C5-C4	1.376 (2)	C7-H7C	0.9600
C5-H5	0.9300		
C5-C1-C2	115.92 (14)	C2-C3-H3	118.2
C5-C1-C1 ${ }^{\text {i }}$	121.91 (15)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	120.06 (15)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 1^{\text {i }}$	122.16 (16)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.0
N2-O1-H1	109.5	C1-C2-H2	120.0
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 3$	116.54 (14)	N1-C4-C5	123.68 (15)
C6-N2-O1	111.59 (12)	N1-C4-H4	118.2
C4-C5-C1	120.16 (14)	C5-C4-H4	118.2
C4-C5-H5	119.9	C6-C7-H7A	109.5
C1-C5-H5	119.9	C6-C7-H7B	109.5
N2-C6-C6 ${ }^{\text {ii }}$	114.82 (16)	H7A-C7-H7B	109.5
N2-C6-C7	124.04 (14)	C6-C7-H7C	109.5
C6 ${ }^{\text {ii }}$ - $\mathrm{C} 6-\mathrm{C} 7$	121.13 (16)	H7A-C7- H 7 C	109.5
N1-C3-C2	123.61 (14)	H7B-C7-H7C	109.5
N1-C3-H3	118.2		
C2-C1-C5-C4	1.8 (2)	N1-C3-C2-C1	0.1 (3)
$\mathrm{C} 1{ }^{\mathrm{i}}-\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 4$	-177.95 (15)	C5-C1-C2-C3	-1.7 (2)
$\mathrm{O} 1-\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 6^{\mathrm{ii}}$	178.74 (15)	$\mathrm{C} 1{ }^{\mathrm{i}}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	178.06 (16)
O1-N2-C6-C7	-0.5 (2)	C3-N1-C4-C5	-1.3 (2)
C4-N1-C3-C2	1.4 (3)	C1-C5-C4-N1	-0.3 (3)

Symmetry codes: (i) $-x,-y,-z+1$; (ii) $-x+1,-y+1,-z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 1 \cdots \mathrm{~N} 1^{\mathrm{iii}}$	0.82	1.94	$2.7459(17)$	169.

Symmetry codes: (iii) $-x+1, y-1 / 2,-z+1 / 2$.

Fig. 1

Fig. 2

